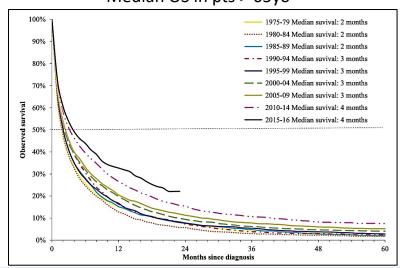


What is the best induction treatment? HMA+VEN

Calogero Vetro

U.O.C. Ematologia con trapianto di midollo A.O.U. Policlinico-S.Marco, Catania

ANCONA • 16 GIUGNO 2023
SEEPORT HOTEL


Disclosures of Name Surname

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Abbvie						х	
BMS						х	
Incyte						x	
JAZZ-Pharma					x		

Historical «uncertainties» using IC

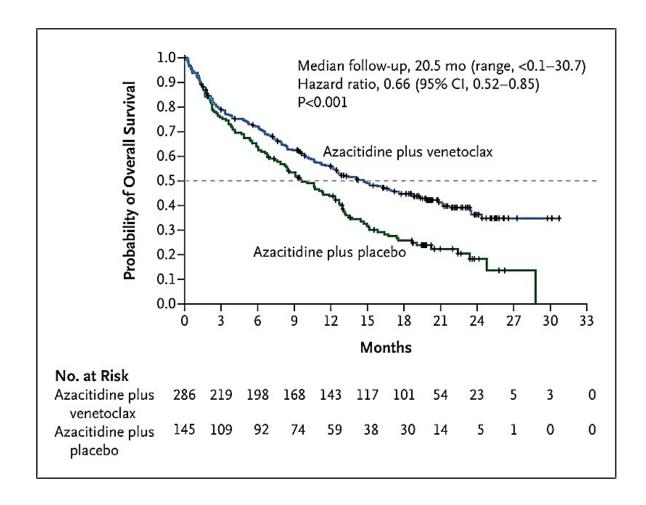
- While progress has been made particularly in younger patients through intensive chemotherapy (IC) and stem cell transplantation (HSCT), the majority of AML patients (> 60 years of age) have historically been considered to be ineligible for intensive therapies because of **comorbidities, more aggressive leukemia biology,** and **reduced tolerance to intensive therapy**. ¹
- Approximately 80% of patients aged \geq 65 years are predicted to have induction mortality rates of \geq 30% with intensive chemotherapy. ³
- Only 2,4% of patients aged ≥ 60 years are disease-free at 10 years after diagnosis (not transplanted setting). 2
- The ideal IC aims to balance between **efficacy** and therapy-induced **morbidity** and **mortality** without selection bias and still needs to be defined.¹

Median OS in pts > 65yo 4

As a matter of fact...

Majority of patients with newly diagnosed AML who are age > 60 years receive lower-intensity therapies.⁵

1. Niederweiser D, Annals of hematology, 2023; 2. Vasu S. et al., blood advances, 2018; 3. Kantarjian et al., Cancer, 2006; 4. Shallis RM, Blood Rev 2019; 5, Medeiros et al., Curr Med Res Opin 2019



Azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts

		OS 1 v curvin				unvival						
		Median	Median		Difference		05% 61	_	1-y survival			
	No. of patients	Months	onths 95% CI N	Months	95% CI	HR	95% CI	P	%	95% CI	Difference	95% CI
Preselected for BSC only	89											
Azacitidine	44	5.8	3.6-9.7	2.1	-1.0-5.2	0.60	0.38-0.95	.0288	30.3	17.5-44.2	11.7	-6.3-29.8
BSC	45	3.7	2.8-5.7						18.6	8.7-31.4		
Preselected for LDAC	312											
Azacitidine	154	11.2	8.8-13.4	4.0	1.7-7.9	0.90	0.70-1.16	.4270	48.5	40.3-56.2	14.5	3.5-25.5
LDAC	158	6.4	4.8-9.1	4.8					34.0	26.6-41.6		
Preselected for IC	87											
Azacitidine	43	13.3	7.2-19.9	1.1	-5.4-7.6	0.85	0.52-1.38	.5032	55.8	39.8-69.1	4.9	-16.2-26.0
IC	44	12.2	7.5-15.1]					50.9	35.2-64.6		

VIALE-A: OUTCOME AND SURVIVAL ANALYSIS

Complete remission plus complete remission with partial hematologic recovery was achieved in 64.7% (95% CI, 58.8 to 70.2) of the patients in the azacitidine—venetoclax group and in 22.8% (95% CI, 16.2 to 30.5) of those in the control group (P<0.001)

The 30-day mortality rate was 6%.

Transfusion independence conversion (conversion from dependent to independent)

VEN+AZA AZA

49% 27%

(76/155) (22/81)

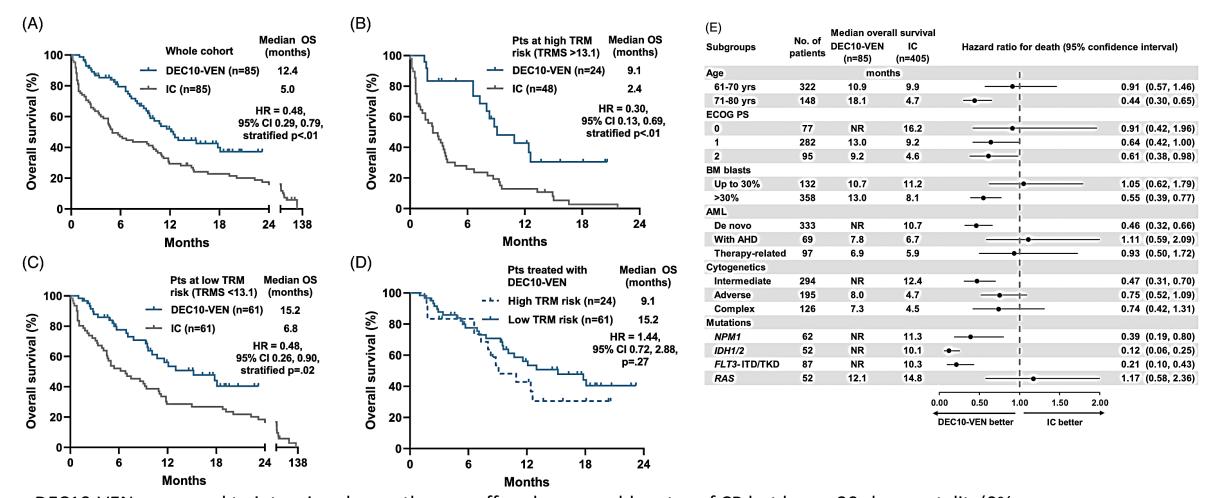
RBC and PLATELET

Patients were dependent on RBC and/or platelet transfusions at baseline

Transfusion independence maintenance (independent from baseline to post-baseline period)

VEN+AZA AZA

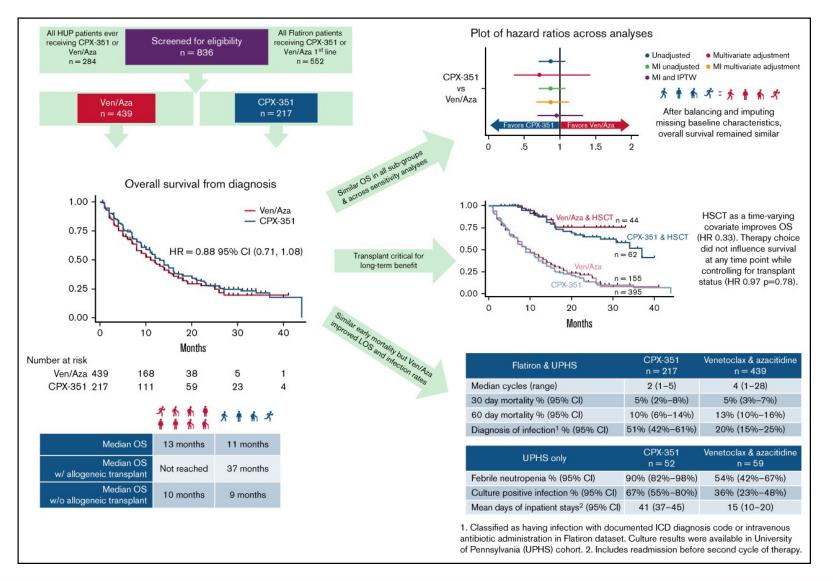
69% 42%


(90/131) (27/64)

RBC and PLATELET

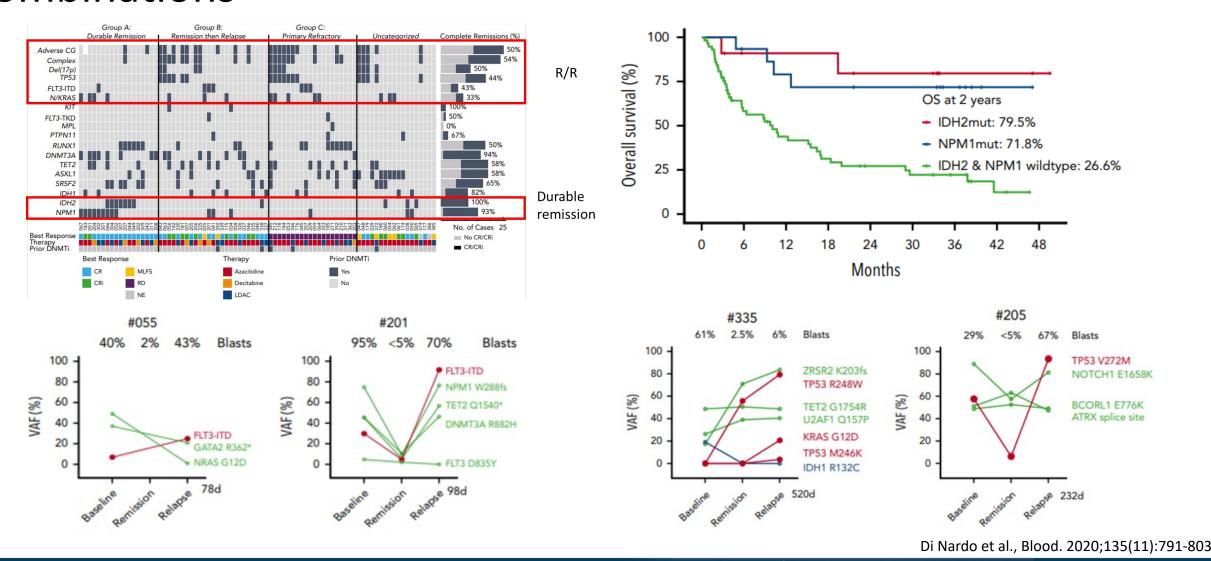
Patients were independent of both RBC and platelet transfusions at baseline

Di Nardo et al., NEJM, 2020


DEC10-VEN vs IC (retrospective)

DEC10-VEN compared to intensive che-motherapy offered comparable rates of CR but lower 30-day mortality (0% vs 33%, p=N/A) and lower 60-day mortality (17% vs 44%, p=0,03).

Maiti et al., American Journal of Hematology, 2020


Real-world effectiveness of CPX-351 vs venetoclax and azacitidine in acute myeloid leukemia

- •First-line treatment with CPX-351 or the combination of venetoclax and azacitidine resulted in similar overall survival.
- •Early mortality was also similar; infection, neutropenic fever, and inpatient length of stay were higher with CPX-351.

Matthews et al., Blood Adv, 2022

Molecular pattern in older patients treated with venetoclax combinations

VIALE-A: Subgroup Analysis of Overall Survival

All Subjects	n/N (%)	n/N (%)	RISKDIFF (%) (95% CI) Aza+V	en vs. Aza+Pb
	190/286 (66.4)	41/145 (28.3)	; — -	38.16 (29.01, 47.3
Gender			1	
Female	78/114 (68.4)	17/ 58 (29.3)	⊢	39.11 (24.62, 53.6
Male	112/172 (65.1)	24/87 (27.6)	⊢ ■	37.53 (25.74, 49.3
Age (Years)				
< 75	70/112 (62.5)	24/ 58 (41.4)	⊢	21.12 (5.60, 36.65
≥75	120/174 (69.0)	17/87 (19.5)	⊢ ■──	49.43 (38.62, 60.2
Region				
US	40/50 (80.0)	6/ 24 (25.0)	⊢	55.00 (34.43, 75.5
EU	72/116 (62.1)	15/59 (25.4)	⊢	36.65 (22.45, 50.8
China	17/24 (70.8)	5/ 13 (38.5)		32.37 (0.28, 64.47
Japan	16/24 (66.7)	2/ 13 (15.4)	—	51.28 (24.07, 78.4
Rest of World	45/72 (62.5)	13/36 (36.1)	├	26.39 (7.12, 45.66
Baseline ECOG			1 1	
Grade < 2	108/157 (68.8)	20/81 (24.7)	⊢ ■	44.10 (32.24, 55.9
Grade ≥ 2	82/129 (63.6)	21/64 (32.8)	⊢	30.75 (16.57, 44.9
Type of AML			1	
De Novo	142/214 (66.4)	33/110 (30.0)	⊢ ■	36.36 (25.71, 47.0
Secondary	48/72 (66.7)	8/ 35 (22.9)	⊢	43.81 (26.14, 61.4
Cytogenetic Risk				
Intermediate	135/182 (74.2)	28/89 (31.5)	⊢	42.72 (31.16, 54.2
Poor	55/104 (52.9)	13/ 56 (23.2)	⊢	29.67 (15.03, 44.3
Molecular Marker			; ;	
FLT3	21/29 (72.4)	8/ 22 (36.4)	—	36.05 (10.19, 61.9
IDH1	13/23 (56.5)	1/ 11 (9.1)	—	47.43 (20.99, 73.8
IDH2	34/40 (85.0)	2/ 18 (11.1)	⊢	73.89 (55.63, 92.1
IDH1/2	46/61 (75.4)	3/ 28 (10.7)	⊢ ■ →	64.70 (48.95, 80.4
TP53	21/38 (55.3)	0/ 14	├	55.26 (39.45, 71.0
NPM1	18/27 (66.7)	4/ 17 (23.5)	—	43.14 (16.25, 70.0
AML with Myelodysplasia				
Related Changes				
Yes	56/92 (60.9)	11/49 (22.4)	⊢	38.42 (23.06, 53.7
No	134/194 (69.1)	30/96 (31.3)	⊢	37.82 (26.50, 49.1
Bone Marrow Blast Count				
< 30%	65/85 (76.5)	16/41 (39.0)	—	37.45 (20.00, 54.8
	35/61 (57.4)	9/ 33 (27.3)	⊢	30.10 (10.49, 49.7
30 -< 50%		16/71 (22.5)		41.75 (29.20, 54.3

Subgroup	Azacitidine plus Venetoclax	Azacitidine plus Placebo	Hazard Ratio for De (95% CI)	ath
	no. of events,	total no. (%)	, ,	
All patients	161/286 (56.3)	109/145 (75.2)	⊢= -1	0.64 (0.50-0.82)
Sex			i	
Female	61/114 (53.5)	41/58 (70.7)	⊢ ■−−−−	0.68 (0.46-1.02)
Male	100/172 (58.1)	68/87 (78.2)	⊢= →	0.62 (0.46-0.85)
Age	, , ,	, , ,	1	,
<75 yr	66/112 (58.9)	36/58 (62.1)	- =; -	0.89 (0.59-1.33)
≥75 yr	95/174 (54.6)	73/87 (83.9)	⊢= → ;	0.54 (0.39-0.73)
Geographic region	, , ,	, , ,		,
United States	27/50 (54.0)	21/24 (87.5)	⊢	0.47 (0.26-0.83)
Europe	70/116 (60.3)	46/59 (78.0)	 -i;	0.67 (0.46-0.97)
China	9/24 (37.5)	5/13 (38.5)	⊢	1.05 (0.35-3.13)
Japan	10/24 (41.7)	9/13 (69.2)		0.52 (0.20-1.33)
Rest of world	45/72 (62.5)	28/36 (77.8)	⊢ ■	0.73 (0.45-1.17)
Baseline ECOG score	7 - (7			(
Grade <2	89/157 (56.7)	65/81 (80.2)	⊢ ■→ !	0.61 (0.44-0.84)
Grade ≥2	72/129 (55.8)	44/64 (68.8)	⊢	0.70 (0.48–1.03)
Type of AML	-, ()	, ()		(
De novo	120/214 (56.1)	80/110 (72.7)	⊢= →!	0.67 (0.51-0.90)
Secondary	41/72 (56.9)	29/35 (82.9)	⊢ ■−1	0.56 (0.35-0.91)
Cytogenetic risk		/ ()		(,
Intermediate	84/182 (46.2)	62/89 (69.7)	⊢ ■→1	0.57 (0.41-0.79)
Poor	77/104 (74.0)	47/56 (83.9)		0.78 (0.54–1.12)
Molecular marker	77/101 (7 1.0)	17/30 (03.3)	!	0.70 (0.5 1 1.12)
FLT3	19/29 (65.5)	19/22 (86.4)		0.66 (0.35-1.26)
IDH1	15/23 (65.2)	11/11 (100.0)		0.28 (0.12–0.65)
IDH2	15/40 (37.5)	14/18 (77.8) —		0.34 (0.16-0.71)
IDH1 or IDH2	29/61 (47.5)	24/28 (85.7)		0.34 (0.20–0.60)
TP53	34/38 (89.5)	13/14 (92.9)	-	0.76 (0.40–1.45)
NPM1	16/27 (59.3)	14/17 (82.4)		0.73 (0.36–1.51)
AML with myelodysplasia-relat		11/17 (02.1)		0.75 (0.50 1.51)
Yes	56/92 (60.9)	38/49 (77.6)		0.73 (0.48-1.11)
No	105/194 (54.1)	71/96 (74.0)	⊢ ■-1 :	0.62 (0.46–0.83)
Bone marrow blast count	103/154 (54.1)	71/30 (74.0)		0.02 (0.40 0.03)
<30%	46/85 (54.1)	28/41 (68.3)		0.72 (0.45-1.15)
30 to <50%	36/61 (59.0)	26/33 (78.8)	·	0.57 (0.34–0.95)
≥50%	79/140 (56.4)	55/71 (77.5)		0.63 (0.45–0.89)
≥30/0	73/140 (30.4)	0.1	1.0	10.0
		-	zacitidine plus Azacitidir	
			netoclax Better Placebo	

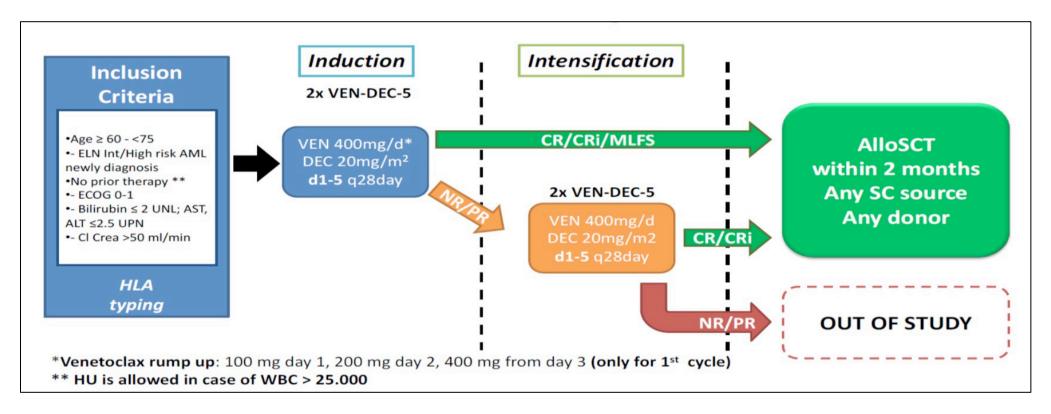
Di Nardo et al., NEJM, 2020

Should high risk AML >60 yo receive HSCT?

HSCT seems to be the only «curative» option

BUT

- frequency of comorbidities increases with age
- biological reserve declines
- socioeconomic support is often tenuous


HMA/VEN as bridge to transplant strategy

Study	Sample size	cCR	12-mo NRM	%12-mo RFS	12-mo OS
Sandhu et al., 2020*	32		18,8 %	43,8 %	62,5 %
Salhotra et al., 2021	51	68,6%	100 day NRM 12%	67% in case of HSCT 33% in case of no HSCT	58% (88% in case of HSCT)
Apel et al., 2021					Not reched median after
Pollyea et al., 2022*	21 HSCT31 potentially eligible		CI of TRM %	CIR 12%	Median surival not reachedMedian survival 17 mo
Winters et al., 2022*	140 IC29 AZA/VEN			- IC 66,1% - AZA/VEN 73,2 %	- IC 74,1 % - AZA/VEN 76,3 %
Pasvolsky et al., 2022*	24		19%	58	63%
Short et al., 2022*	44 IC29 LIT54 LIT+VEN		- 27% (2y-NRM) - 17% - 16%	- 54% - 41% - 60%	- 58% - 41% - 72%

Retrospective studies

^{*} post-HSCT analysis only

PHASE II STUDY ON VENETOCLAX PLUS DECITABINE FOR ELDERLY (≥60 <75YEARS) PATIENTS WITH NEWLY DIAGNOSED HIGH-INTERMEDIATE RISK AML ELEGIBLE FOR ALLO-SCT : MIDTERM UPDATE OF VEN-DEC GITMO STUDY

At data cut-off, 41/94 (43.6%) patients have been successfully undergone allo-SCT and 12 patients are awaiting for transplant.

Russo D. et al., EHA 2023

Venetoclax and Azacitidine for Non-Elderly Adult Patients With Acute Myeloid Leukemia

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Know the risks and potential benefits of clinical studies and talk to your health care provider before participating. Read our disclaimer for details.

Sponsor:

University of Colorado, Denver

Collaborator:

AbbVie

Information provided by (Responsible Party):

University of Colorado, Denver

Venetoclax + Decitabine vs. "7+3" Induction Chemotherapy in Young AML

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Know the risks and potential benefits of clinical studies and talk to your health care provider before participating. Read our disclaimer for details.

Sponsor:

Chen Suning

Information provided by (Responsible Party):

Chen Suning, The First Affiliated Hospital of Soochow University

ClinicalTrials.gov Identifier: NCT03573024

Recruitment Status (a): Recruiting
First Posted (b): June 28, 2018

Last Update Posted 6 : March 17, 2023

See Contacts and Locations

View this study on Beta.ClinicalTrials.gov

Venetoclax + Azacitidine vs. Induction Chemotherapy in AML

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Know the risks and potential benefits of clinical studies and talk to your health care provider before participating. Read our disclaimer for details.

Sponsor:

Massachusetts General Hospital

Collaborator:

AbbVie

Information provided by (Responsible Party):

Amir Fathi, Massachusetts General Hospital

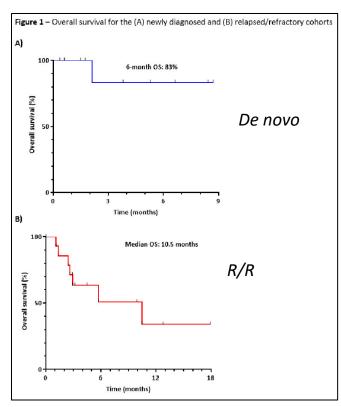
View this study on Beta.ClinicalTrials.gov

ClinicalTrials.gov Identifier: NCT04801797

Recruitment Status : Recruiting
First Posted : March 17, 2021

Last Update Posted 6 : November 17, 2022

See Contacts and Locations


View this study on Beta.ClinicalTrials.gov

Addition of a third agent?

AZA/VEN/GILT (Phase 1b/2)

Short et al., Blood, Volume 138, Supplement 1, 23 November 2021, Page 696

IVO/VEN ± AZA (Phase 1b/2)

	All	DL #1	DL #2	DL #3
	(N=25)	(N=6)	(N=6)	(N=13)
ORR	23	4	6	13
CRc	21	4	6	11
CR	13	3	3	7
CRh	2	-	2	-
CRi	6	1	1	4
MLFS	1	-	-	1
PR	1	-	-	1
NR	2	2	-	-
EFS	NR (9.4-NR)	9.6 (2.8-NE)	9.4 (7-NE)	NR
os	NR	9.7 (4.5-NE)	NR (8.5-NE)	NR

ORR 92%


DL1: IVO/VEN 400

DL2: IVO/VEN 800

DL3: IVO/VEN 400 + AZA

Lachowiez et al., J Clin Oncol 39, 2021 (suppl 15; abstr 7012)

AZA/VEN/ENA (Phase 2)

ORR 100% in ND

Venogupal et al., Blood Cancer J. 2022

CLAD and LDAC plus VEN alternating with AZA in older patients with de novo AML

Response, %	Total		
(unless otherwise stated)	(N = 60)		
Best response			
CR	80		
CRi	13		
NR	5		
Died	1.7		
ORR (CR + CRi + PR)	93		
CRc rate (CR + CRi)	93		
Patients requiring re-induction cycle (n = 57)	7		
MRD at response assessment (n = 51)			
Negative	84		
Positive	16		
Median number of treatment cycles (IQR)	3.0 (2.0-5.0)		
Responders receiving allo-HSCT (n = 56)	34		
Mortality rate at 4 weeks	1.7		
Mortality rate at 8 weeks	6.7		
Allo-HSCT, allogeneic hematopoietic stem cell tra	nsplantation: CR_complete		

Allo-HSCT, allogeneic hematopoietic stem cell transplantation; CR, complete response; CRc, composite complete response; CRi, complete response with incomplete hematologic recovery; MRD, measurable residual disease; NR, no response; ORR, overall response rate; PR, partial response; IQR, interquartile range.

- •The most frequent Grade 3 or 4 nonhematologic adverse events (AEs) was febrile neutropenia (55%), pneumonia (23%), and allergic reaction (3%).
- •Grade 4 tumor lysis occurred only in one patient.
- •Median time to absolute neutrophil count (ANC) recovery of >500 and >1,000 was 25 and 27 days, respectively, and median time to platelet recovery of >50,000 and >100,000 was 21 and 24 days, respectively.

Reville et al., ASH 2021

Conclusions

- HMA/VEN possible option in fit AML >60y
- Pitfalls:
 - 1. Standardization of treatment (ancillary therapy; number of cycles...)
 - 2. Lack of prospective randomized trials
 - 3. HSCT approach
- Addition of a third agent could increase remission rate and, hopefully, survival

